
DOCUMENT RESUME

ED 372 116 TM 021 957

AUTHOR Wang, Tianyou; Kolen, Michael J.
TITLE A Quadratic Curve Equating Method To Equate the First

Three Moments in Equipercentile Equating.
INSTITUTION American Coll. Testing Program, Iowa City, Iowa.
PUB DATE Apr 94
NOTE 36p.; Paper presented at the Annual Meeting of the

American Educational Research Association (New
Orleans, LA, April 4-8, 1994).

PUB TYPE Reports Evaluative/Feasibility (142)
Speeches/Conference Papers (150)

EDRS PRICE MF01/PCO2 Plus Postage.
DESCRIPTORS Comparative Analysis; Data Collection; *Equated

Scores; *Goodness of Fit; Licensing Examinations
(Professions); Models; *Research Methodology;
Simulation; Statistical Studies; *Test Format; Test
Items

IDENTIFIERS ACT Assessment; *Equipercentile Equating; *Quadratic
Equations

ABSTRACT
In this paper a quadratic curve equating method for

different test forms 'under a random-group data-collection design is
proposed. Procedures for implementing this method and related issues
are described apd discussed. The quadratic-curve method was evaluated
with real test data (from two 30-item subtests for a professional
licensure examination and two 20-item subtests from the reading
portion of the American College Testing program assessment) and
simulated data in terms of model fit and equating error, and was
compared with several other equating methods. It was foLind that the
quadratic-curve method fit many of the real test data examined, and
that when the model fits the population, this method could perform
better than other, more sophisticated equating methods. Six tables
and 12 figures illustrate the analyses. (Contains 9 references.)
(SLD)

***********************************************************************
* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *

***********************************************************************



Li)

A Quadratic Curve Equating Method to Equate the First Three
Moments in Equipercentile Equating

U.S OEPAKTMENT Of EDUCATIO
Oetce of EduciatiOnal Rfaiearch and In:rove:nen'

EDUCATIONAL RESOURCES INFORMMION
CENTER (ERIC)

134hrs document has been reprOduCe0 45

recerved from the person or otganaation
ortgtnating tt

0 Mtnor changes have been made to tmorove

reProduCton Quality

PointS Of view Or OCitinlOn4 slated rn Ins dm.
ment 60 not necessarily represent official
OEFtl pOStlion Of pOliCy

Address correspondence to:

Tianyou Wang

Michael J. Kolen

American College Testing

Tianyou Wang

ACT

P.O. Box 168

Iowa City, IA 52243

Phone: (319) 337-1641

-PERMISSION TO REPRODUCE THIS

MATERIAL HAS BEEN GRANTED BYf OA)

TO THE EDUCATIONAL RESOL.,..:ES

INFORMATION CENTER IERIO1'

Paper presented to the annual meeting of the American Educational Research Association, New

Orleans, April, 1994.

BEST COPY AVAILABLE



Abstract

In this paper, . quadratic curve equating method for equating different test forms under a

random group data collection design is proposed. Procedures for implementing this method and

related issues are described and discussed. The quadratic curve method was evaluated using real

test data and simulated data in terms of model fit and equating error, and was compared to

several other equating methods. It was found that the quadratic curve method fit many of the real

test data examined and that when model fits the population, this method could perform better

than other more sophisticated equating methods.
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A Quadratic Curve Equating Method to Equate

the Virst Three Moments in Equipercentile Equating

In standardized testing, often multiple test forms are needed because examinees need to take

the test at different occasions and one test form canthe administered only once to ensure test

security. In this situation, it is typically required that test scores derived from different forms are

equivalent. Efforts can be made in the test construction process to make different forms.as

equivalent as possible (e.g., forms can be built based on the same table of specifications; items can

be selected to haw; approximately equal average difficulty level). But often these efforts are not

enough to ensure test score equivalency for different forms. So, test equating based on test data is

often performed to adjust test scores so that scores on different forms are more equivalent. There

are several designs for collecting test equating data. One of the designs is the random groups

design, in which different test forms are administered to different but randomly equivalent groups

of examinees.

Under the random groups equating design, the examinee groups that take different test

forms (for simplicity, say, form X and form Y) are regarded as being sampled from the same

populadon. The differences in score distributions for different test forms are attributed to form

differences and randomness of the examinee groups. Equating form X to form Y involves

transforming the X scores so that the transformed X scores have the same distribution as the Y

scores. If an assumption can be made that the population distributions for X and Y scores have the

same shape and only differ in mean and variance, then the linear equating method will be most

appropriate. Linear equating takes the form

y (X) = y[x j<1+ y

Cr X

(1)



where x is the score ori form X, ktx and tty are means for form X and form Y, crx and cry are

standard deviations (s.d.) for form X and form Y, and 4,(x) is the equated form Y score for x.

If no assumptions can be made about the shape of the population score distributions,

equipercentile equating method is the method of choice. Equipercentile equating for a discrete score

distribution is given by

p* (x)-13431 < u* (x)1
ey (x) = u (x)} (2)

where Pr means probability, p* (x)= Pr(X < x)+.5Pr(X = x) , and u* (x) is the smallest integer

such that p* (x)= Pr[Y < u* (x)].

Equipercentile equating based on samples may have large sampling error because for any

particular score, the equafing relationship is based on local frequencies at that score point. Two

types of smoothing techniques have been introduced to reduce random errors: pre-smoothing and

post-smoothing. Pre-smoothing smooths the score distributions for form X and form Y separately

and equates the smoothed score distributions. Post-smoothing (Kolen, 1984) smooths the

equipercentile equating function directly.

Studies have been done to evaluate these methods (see Kolen, 1984, Fairbank, 1987, Cope

& Kolen, 1990, Hanson. 1990, Hanson, Zeng, & Colton, 1991). Results from Hanson, Zeng,

and Colton (1991) she ved that smoothed equating was more accurate than unsmoothed

equipercentile and linear methods in terms of mean squared errors. However, linear equating

consistently hao smaller random error, especially when sample sizes were small. This finding

resulted because the linear method uses only means and standard deviations in computing the

equating equation and these aggregate statistics typically have small sample variability. However, a

fundamental limitation of linear method is that if the shape of the distribution of X scores is

different from that of Y scores in the population, it could be seriously biased. While an increase in



sample size could reduce standard errors of equating, it will not reduce bias. Angoff (1987)

commented that equipercentile equating lacks a theoretical basis while linear equating makes strong

statistical assumptions which are often violated. He suggested that consideration be given to

equating methods which employ theoretical models that take into account higher moments. The

purpose of this study is to propose a quadratic curve equating method, and to compare it with some

other equating methods. If successful, the quadratic curve method would produce less random

error than other pre- or post-smoothirrx equipercentile methods, and less bias than the linear

method.

The Quadratic Curve Equating Method

In choosing such a nonlinear equating function, the following aspects were considered:

(1) The function should be more flexible than the linear function.

(2) The function should preserve beneficial properties of linear equating, such as using

statistics with small random errors and being computationally simple.

(3) The performance of this method should be comparable to more complicated techniques

like smoothed equipercentile equating in most, if not all, testing situations.

Based on the preceding considerations, a quadratic curve to relate scores on form X to form

Y was proposed which takes the form

q(x)= ax2 + bx + c . (3)

The coefficients a, b, c are so determined such that the equated X scores will have the same

mean, standard deviatio (s.d.) and skewness as the form Y scores. The difference between this

relationship and linear equating relationship is that it has one additional squared term and that

skcvness is taken into account in computing the equating function.

6 3



The assumption underlying this method is that the shapes of the X and Y score

distributions are the same except that they have different skewness. In another words, if population

distributions are used that differ only in their first three moments, the equated X score distribution

using this method will be the same as the Y score distribution.

In order to determine coefficients a, h, and c using the method of moments, the following

set of non-linear equations needs to be solved:

E[a(X)] E(Y) = 0 (4)

El[q(X)]2} E(Y2)= 0 (5)

Ef[q(X)]3} E(Y3)= 0 (6)

where E represents expectation. If 1(X) is substituted in these equations, we get:

EtaX2 + bX + c] E(Y) = 0 (7)

ERaX2 + bX + 021 02) = 0 (8)

E[(aX2 + bX + 031 0'1= 0 (9)

The left hand side of these equations are functions of a, b, c, the first six moments of X

scores, and the first three moments of Y scores. When population distributions are not known,

sample moments are used. The Newton-Raphson method could be used to simultaneously solve

this set of equations for a, b and c iteratively. Another easier way to find these coefficients is to

utilize the property that linear transformation does not change the skewness of a score distribution.

The procedure is as follows.

First, let us define skewness of Y as

E[Y E(Y)j3
Sk(Y)=

{E[Y E(Y)]2} Y2

7
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Find d so that Z=X+dX2 will have sam,3 skewness as Y; i.e., Sk(Z)=Sk(Y). This can be done

using an iterative numerical method. Second, Let b equal the ratio of s.d. of Y to s.d. of Z; i.e.,

b =
s.d.(Y)

. We know that b Z will have same s.d. and skewness as Y because multiplication by
s.d.(Z)

the constant b does not change the skewness of Z. Then add a constant c so that c+b(X+dX2) has

same mean, s.d. and skewness as Y. The three coefficients are thus determined.

Some Technical Issues

Symmetry: One of the requirements for an equadng method is symmetry. That is, the same

equating relationship should result whether X is equated to Y or Y is equated to X. This quadratic

function is clearly not symmetric since different orders of moments are used for X and Y scores.

Kolen (1984) proposed an average of two equating relarions obtained when X is equated to Y and

Y is equated to X. However, this treatment still does not yield exactly symmetric results. For the

quadratic method, a weighted average of two equating functions will be used. Suppose for a given

score x, the equated score obtained from one direction is y1 , that from the other direction is y2 ,

and the two first derivatives at score point x are dl and d2 , then the weighted average is

where

= My, + (1 w1).Y2

tan[.5arctan(d,)+.5arctan(d2)1 d2
Wi

This weighted average is guaranteed to be symmetric for the linear case. For the quadratic

curves in this situation, the curvature can be expected to be very small. Thus, a good

approximation to symmtry can be assumed.

Equating at Extreme Scores: Equating at both ends of score range are problematic for nearly

all equating methods. This issue also concerns the quadratic method. In implementing the post-

smoothing method, Kolen (1984) excluded the upper half percent and the lower half percent of the
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data in computing the spline function and use two straight lines to link the ends of the spline to the

two unequated end scores. This practice was also adopted in the present study.

Methodology and Data

The proposed quadratic curve equating was evaluted in two aspects: model fit and sampling

enor.

Model Fit

Like the linear equating method, this new method makes an assumption about the true

population equating relationship. How well this method performs logically depends on how close

the true eqauting is to the quadratic form in real testing situations. Real test data were used to

assess the model fit for this method. For each pair of test forms, five different equating methods

were applied and plotted for visual examination: unsmoothed equipercentile equating, spline post-

smoothing with smoothing parameter s=0.2 and s=0.5, quadratic curve equating, and linear

equating. The first four central moments of the equated X scores with the quadratic curve method

were also computed. If the assumptions of this method are met, the kurtosis of the equated X

scores would be expected to be close to that of the Y scores. Under normality, the sampling

variance of kurtosis equals 24/N where N is the sample size (see Kendall & Stuart, 1977, pp.

258). The extent to which the model fits the data can be partially assessed by comparing the

difference of the kurtosis after equating and the standard deviation of absolute kurtosis differences.

The first two pairs of data are the same as the first two pairs used in Hanson, Zeng, and

Colton (1991). The first pair consists of two 30-item subsets from a professional licensure exam.

The second pair consists two 20-item subsets of two forms of Reading subtests of ACT
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Assessment. Each of these data sets.have very large sample sizes. So the unsmoothed

equipercentile equatingrelationship is taken as the population equating.

Data from an operational equating of the ACT.Assessment were also used. These data

contain seven forms (form A to form G) for each cf the four tests: English with 75 items,

Mathematics with 60 items, Reading with 40 items.and Science with 40 items. For each test, seven

pairs of distributions were used for equating (form A to 13, B to C G to A).

Sampling Error

Because the quadratic curve method uses aggregate statistics, like the linear method, it

would be expected to have less sampling variance than the unsmoothed equipercentile method or

even the smoothed equipercentile methods when the model assumptions are met. Parametric

bootstrapping methods (Efron, 1982) were used to assess the sampling error of this equating

method and compare it to the unsmoothed equipercentile method, the linear method, and the spline

post-smoothing method. First, a pair of population distribution were defined using either smoothed

sample distibutions or very large sample distributions. Second, sample distributions with sample

size N (three different sample sizes were used in this study. For long test of 75 items N=500,

2000, and 3000; for short tests of 20, 30 and 40 items, N=250, 500, and 2000) were generated

from the population distributions by computer and equatings with various methods were

performed. Third, the second step was repeated n (in this study, n=200) times and evaluative

indices were computed for each score point.

The study by Hanson, Zeng, and Colton (1991) showed that pre-smoothing and post-

smoothing yielded comparable results in terms ofmean squared error. So it is sufficient to just use

post-smoothing to represent smoothed equipercentile methods.

Three types of population distributions were used. The first type was two pairs of observed

distributions with very large sample sizes. These observed distributions were taken directly as the

population distributions. These were the 30-item licensure exam subtests and the 20-item Reading

subtests described previously.
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The second and third types was on smoothing ACT Assessment score distributions using

log-linear smoothing Method (Hanson, 1992). The second type was intended to represent

situations where the equipercentile equatings with smoothed score distributions were close to the

quadratic function. The third type were to represent situtions where the equipercentile equatings

with smoothed score distributions were not close to, the quadratic function. The third type was used

also to assess the robustness of the quadratic curve method to model violation. From initial

examination of the equating functions from different methods, English form A and B, Science

form G and A were selected to represent the second type and Reading form A and B were selected

to represent the third type. Pearson X2 statistics for model fit were examined to determine the

degrees of the log-linear model. Figure 7 gave plots of the equipercentile equating and other

equatings based on three pairs of smoothed score distributions.

The evaluative indices are bias, standard error (s.e.), and root mean squared error (RMSE).

For any score x on form X, denote e(x) as the true (or populaton) equated score and e,(x) as

equated score based on sample s with any particular equating method. The mean equated score

based on n samples is

1
Pt

Pi(x)
n s.I

The estimated bias is

e(x).

The estimated standard error is

)11 i \ 2

!(es(x)i-ti(.)) '
n ,=,



The estimated root mean squared error is

1Des(x) e(x))2
.

n x=.1

These indices are computed for all the raw score points and estimated root mean squared

errors are ploted for all the methods being compared. Weighted averages of these indices weighted

by the X score population distribution are also computed by the formula:

E(index)Pr(X = x),
x=i

where k is the number of items.

The root mean squared errors for five above mentioned equating methods were plotted

along the score scale for visual comparison. Weighted averages of absolute bias, standard error,

root mean squared error(RMSE) and estimated standard error of RMSE were tabulated.

Results

Descriptive statistics for all real data equatings are summarized in Table 1. Because of the

adjustment to achieve symmetry, the first three central moments of form X after equating were not

exactly the same of that of form Y. But this adjustment had little effect on means and standard

deviations except for one case. (ACT Mathematics form C and form D where the adjustment

resulted in a 0.019 difference in s. d.); skewness was affected only at the third decimal point

except for one case. The equating functions for the real test data sets are plotted in Figure 1 through

Figure 6. The plots showed that the quadratic equating is more flexible and provides better fit in

most cases than the linear equating method.

Figures 1 and 2 plot the equating functions for the two large sample data. 1-lere, the

unsmoothed equipereentile equatings are regarded as population equatings. The post-smoothing
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functions were closer to the population equating because that the unsmoothed equipercentile

equating is very smooth. The quadratic curve equating appears to fit the two population equatings

quite well. The maximum biases are within 0.2 score points. The kurtosis difference were reduced

by about half after equating in both cases.

The plots of equating functions based on ACT Assessment operational equating data sets

showed that the quadratic curve method performed quite well in smoothing the equipercentile

equating function in most cases. In many cases, the quadratic equating function was between post-

smoothings with s=0.2 and s=0.5. The quadratic method did not perform well in 3 to 4 cases

(Math C to D, Math D to E, Reading A to B, and perhaps Reading B to C), where the unsmoothcd

equipercentile equatings displayed an "S" shape. Examination of the lcurtosis revealed that these

cases correspond to the highest after-equating kurtosis differences among all the 28 quadratic

equatings. The standard error of sample kurtosis for a sample size of 2900 is 0.091. The standard

error for the kurtosis difference for two independent samples of size of 2900 is thus about 0.129.

The average absolute kurtosis difference before equating is 0.163. The average (over all equatings

conducted) absolute kurtos.s difference after equating is 0.097 which is smaller than the standard

deviation of the sample difference. The number of absolute kurtosis differences that are smaller

than 0.129 is 20 out of 28. These results suggested that the quadratic curve method fits this set of

operational equating data sets reasonably well.

Population equatings for three pairs of distributions used in the simulation are shown in

Figure 7. Root mean squared errors for five different equating methods based on five pairs of

population distributions were plotted in Figure 8 through Figure 12. Figures 8 and 9 contain plots

of RMSE of equatings for samples draw from two large sample data sets: the 30-item Licensure

test and the 20-item ACT Reading test.

For the Licensure test, the quadratic method performed about the same as the

postsmoothing methods for the small sample size and performed better than these methods for the

large sample size. For the 20-item Reading test, the quadratic method performed better than the

smoothing methods at some score ranges but not at others. Note that in these twocases, linear

10



equating had remarkably small RMSE, especially when sample sizes were small. This finding is

probably due to the small form difference in both cases.

Figures 10 and 11 present RMSE plots for situations when the quadratic function

appearedly fit the population equating relationship well. For these two cases, both the smoothing

methods and the quadratic method improved over the unsmoothed equipercentile methods. The

amount of improvement of post-smoothing methods is consistent to the results in Hanson, Zeng,

and Colton (1991). Cleary, in these two cases, the quadratic method performed better than all other

methods regardless of the sample sizes. But the better perfomance is more consistent along the

score scale for small samples than that for large samples.

Figure 12 contained plots of RMSE for a situation where the population equating

relationship does not fit a quadratic function. Apparently, there is no advantage to using this

method over using the unsmoothed equipercentile method. Interestingly, when the sample size is

small, the linear method had the smallest RMSE in the middle score range; when sample size is

large, virtually no methods showed improvement over unsmoothed equipercentile method in this

case.

Tables 2 through 6 contained the average values of absolute bias, standard error, and

RMSE, weighted by the X score population frequencies. For the first and second type of

populations, all the standard errors were much larger than the absolute bias except for the linear

method. So the RMSE values were mainly attributed to standard errors. For the first type

populations, the quadratic method had slightly better average performance than the smoothing

methods in one case and had slightly worse average performance in the other case. For the second

type populations, the quadratic method generally had better average performance than the

smoothing methods, a result which is consistent with the plots. For the third type populations, the

quadratic method had smaller average standard error but not absolute bias. The larger average

RMSE were attributed to larger bias. Post-smoothing with larger smoothing parameters produced

larger bias, but a smaller standard error than that with smaller smoothing parameters. In almost all

the cases, linear methods always had smaller standard errors.

1 4



Discussion and Conclusion

In searching for an appropriate polynomial function to model the equating relationshiF,

there was a consideration to add one cubic term to the quadratic function so that kurtosis can also

be equated. But it was found not very desirable for two reasons. First,,it makes computatio1 much

more complicated. Second, sample kurtosis has much more random error than skewness. The

variance of sample kurtosis is four times that of sample skewness (see Kendall & Stuart, 1977, pp.

258). Higher order polynomial functions might be investigated in the future if these issues can be

properly resolved. The quadratic function could be studied as the first step in this direction.

Linear and equipercentile equating both have advantages and limitations. Smoothing

methods are aimed at reducing the random error of the equipercentile method but they usually

involve complicated mathematical manipulation and computer programming. Also, they often

require subjective judgement about model parameters. The quadratic equating method proposed in

this paper provides another approach to reduce random error as well as bias. Both the idea and

computation are simple, and implementation of the quadratic method does not require subjective

judgement.

The results based on the real test data in this study showed that the quadratic method

worked well for most but not all of the test data. When the population equating relationship was

close to a quadratic in form, this method clearly displayed smaller random error and bias than other

sophisticated methods for both small and large sample sizes. However, procedures need to be

derived to judge whether or not the quadratic method adequately fits the population based on

sample data. An examination of the equipercentile equating relationship and the kurtosis difference

before and after the quadratic equating might be helpful if this procedure were to be used in

practice.
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Table 1. Descriptive Statistics f6r Observed Data before and after Quadratic Curve Equating

Mean S.d. Skewness Kurtosis Kurt. diff. Kurt. diff. Sample size
before equat. after equat.

Licensure Subtest (30 items)
New form before equatini
New form after equating
old form

18.880
19.157
19.157

3.680
3.430
3.430

-0.130
-0.304
-0.308

2.786
2.934
3.051

38765

0.265 0.117 38765

ACT Reading Subtest (20 items)
New form before equatiN
New form after equating
old form

Form A before equating
Form A after equating
Form B before equating
Form B after equating
Form C before equating
Form C after equating
Form D before equating
Form D after equating
Form E before equating
Form E after equating
Form F before equating
Form F after equating
Form G before equating
Form G after equating

12.300
12.688
12.688

3.757
3.580
3.580

-0.205
-0.278
-0.280

2.391
2.449
2.522

82062

0.131 0.073 83693

ACT En lish (75 items)
48.482 13.088
51.325 12.753
51.325 12.755
48.571 12.207
48.571 12.207
51.156 12.206
51.156 12.205
50.741 12.204
50.741 12.204
51.273 12.770
51.273 12.770
50.070 12.876
50.070 12.876
48.482 13.091

-0.089
-0.320
-0.322
-0.168
-0.167
-0.409
-0.406
-0.312
-0.313
-0.380
-0.381
-0.306
-0.308
-0.085

2.187
2.373
2.423
2.286
2.302
2.553
2.532
2.436
2.395
2.465
2.521
2.428
2.372
2.217

0.185 0.030 2968

0.236 0.050 2748

0.121 0.016 2921

0.230 0.021 2903

0.137 0.041 2880

0.126 0.056 2853

0.149 0.056 2800

ACT Mathematics (60) items
Form A before equating
Form A after equating
Form B before equating
Form B after equating
Form C before equating
Form C after equating
Form D before equating
Form D after equating
Form E before equating
Form E after equating
Form F before equating
Form F after equating
Form G before equating
Form G after equating

28.463
30.300
30.301
29.758
29.758
31.080
31.082

10.569
12.198
12.187
11.563
11.567
12.741
12.722

28.937 11.448
28.937 11.450
29.819. 11.358
29.819 11.358
30.389 11.109
30.389 11.108
28.463 10.566

0.481
0.256
0.276
0.415
0.424
0.179
0.208
0.296
0.305
0.380
0.380
0.321
0.324
0.474

2.535 0.282 0.143 2968
2.327
2.148 0.287 0.179
2.281
2.463 0.315 0.182
2.298
2.060
2.116
2.367 0.307 0.251 2880
2.444
2.424
2.375
2.253 0.171 0.122 2800
2.392

2748

2921

0.403 0.238 2903

0.057 0.020 2853
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Table 1 (continued). Descriptive Statistics for Observed Data before and after Quadratic Curve Equating

Form A before equating
Form A after equating
Form B before equating
Form B after equating
Form C belore equating
Form C after equating
Form D before equating
Form D after equating
Form E before equating
Form E after equating
Form F before equating
Form F after equating
Form G before equating
Form G after equating

Form A before equating
Form A after equating
Form B before equating
Form B after equating
Form C before equating
Form C after equating
Form D before equatipg
Form D after equating
Form E before equating
Form E after equating
Form F before equating
Form F after equating
Form G before equating
Form G after equating

Mean S.d. Skewness Kurtosis Kurt. diff. Kurt. diff. Sample size
before equat. after equal

ACT Reading (40) items
24.304 6.584 -0.024 2.375 0.108 0.059 2968
25.350 7.581 -0.065 2.386
25.350 7.581 -0.061 2.117 0.258 0.269 2748
25.669 6.577 -0.141 2.158
25.669 6.578 -0.150 2.466 0.349 0.308 2921
25.837 6.896 -0.185 2.492
25.837 6.896 -0.185 2.459 0.007 0.033 2903
25.314 6.955 -0.099 2.408
25314 6.954 -0.102 2.312 0.147 0.096 2880
24.731 6.821 0.026 2.275
24.731 6.822 0.031 2.385 0.073 0.110 2853
25.452 6.511 -0.139 2.458
25.452 6.512 -0.140 2.483 0.098 0.025 2800
24.804 6.585 -0.022 2.434

ACT Science (40) items
24.153 6.439 -0.192 2.553 0.148 0.042 2968
22.661 7.077 0.200 2.543
22.659 7.064 0.170 2.373 0.180 0.170 2748
22.227 6.964 0.231 2.400
22.330 6.964 0.232 2.431 0.058 0.031 2921
24.122 6.640 -0.044 2.415
24.122 6.642 -0.048 2.496 0.065 0.081 2903
22.965 6.515 0.061 2.477
22.965 6.515 0.060 2.463 0.033 0.014 2880
22.374 6.334 0.175 2.495
22.374 6.334 0.173 2.443 0.020 0.052 2853
22.439 7.073 0.110 2.426
22.439 7.072 0.111 2.405 0.038 0.021 2800
24.153 6.438 -0.191 2.511



Table 2. Average Absolute Bias, Standard Error and Root Mean Squared Error for the Licensure Subtest.

Abs. Bias

Sample Size = 250

S.E. RMSE s.e.(RMSE) Abs. Bias

Sample Size = 500

S.E. RMSE s.e.(RMSE)
Unsmoothed 0.041 0.457 0.462 0.027 0.026 0.298 0.303 0.010
Linear 0.113 0.388 0.410 0.020 0.117 0.242 0.276 0.008
Quad. Curve 0.051 0.403 0.410 0.021 0.049 0.257 0.265 0.008
Post Smooth 0.2 0.024 0.405 0.409 0.021 0.049 0.257 0.267 0.008
Post Smooth 0.5 0.069 0.387 0.399 0.019 0.088 0.247 0.269 0.007

Abs. Bias

Sample Size = 2000

S.E. RMSE s.e.(RMSE)
Unsmoothed 0.019 0.159 0.164 0.003
Linear 0.111 0.132 0.180 0.003
Quad. Curve 0.034 0.140 0.148 0.002
Post Smooth 0.2 0.024 0.143 0.150 0.002
Post Smooth 0.5 0.059 0.140 0.158 0.003

Table 3, Average Absolute Bias, Standard Error and Root Mean Squared Error for the ACT Reading Subtest.

Abs. Bias

Sample S ize = 250

S.E. RMSE s.e.(RMSE) Abs. Bias

Sample Size = 500

S.E. RMSE s.e.(RMSE)
Unsmoothed 0.019 0.436 0.436 0.021 0.013 0.301 0.301 0.009
Linear 0.062 0.365 0.373 0.016 0.063 0.249 0.259 0.007
Quad. Curve 0.028 0.381 0.383 0.017 0.031 0.264 0.266 0.008
Post Smooth 0.2 0.034 0.380 0.382 0.017 0.026 0.258 0.259 0.007
Post Smooth 0.5 0.051 0.361 0.366 0.016 0.047 0.244 0.250 0.007

Abs. Bias

Sample S ize = 2000

S.E. RMSE s.e.(RMSE)
Unsmoothed 0.010 0.151 0.152 0.002
Linear 0.068 0.124 0.145 0.002
Quad. Curve 0.039 0.132 0.139 0.002
Post Smooth 0.2 0.023 0.130 0.133 0.002
Post Smooth 0.5 0.046 0.122 0.133 0.002



Table 4. Average Absolute Bias, Standard Error and Root Mean Squared Error for the ACT English Test (A to B).

'Sample Size = 500 Sample Size = 2000

Abs. Bias S.E. RMSE s.e.(RMSE) Abs. Bias S.E. RMSE s.e.(RMSE)
Unsmoothed 0.081 1.146 1.154 0.139 0.072 0.592 0.598 0.037
Linear 0.750 0.919 1.230 0.138 0.685 0.471 0.904 0.057
Quad. Curve 0.150 0.978 1.001 0.102 0.123 0.504 0.538 0.028
Post Smooth 0.2 0.102 1.029 1.039 0.113 0.073 0.530 0.541 0.029
Post Smooth 0.5 0.334 0.984 1.052 0.110 0.218 0.513 0.566 0.031

Abs. Bias

Sample Size = 3000

S.E. RMSE s.e.(RMSE)
Unsmoothed 0.038 0.470 0.476 0.024
Linear 0.733 0.370 0.849 0.044
Quad. Curve 0.121 0.396 0.434 0.019
Post Smooth 0.2 0.066 0.419 0.433 0.020
Post Smooth 0.5 0.193 0.406 0.462 0.023

Table 5. Average Absolute Bias, Standard Error and Root Mean Squared Error for the ACT Science Test (G to A).

Abs. Bias

Sample Size = 250

S.E. RMSE s.e.(RMSE) Abs. Bias

Sample Size = 500

S.E. RMSE s.e.(RMSE)
Unsmoothed 0.078 0.809 0.816 0.068 0.024 0.600 0.603 0.037
Linear 0.449 0.642 0.813 0.064 0.461 0.483 0.695 0.042
Quad. Curve 0.101 0.680 0.694 0.048 0.101 0.516 0.530 0.028
Post Smooth 0.2 0.056 0.721 0.728 0.052 0.072 0.540 0.547 0.030
Post Smooth 0.5 0.201 0.688 0.726 0.048 0.215 0.527 0.579 0.033

Abs. Bias

Sample Size = 2000

S.E. RMSE s.c.(RMSE)
Unsmoothed 0.020 0.298 0.302 0.009
Linear 0.463 0.238 0.539 0.019
Quad. Curve 0.103 0.254 0.281 0.008
Post Smooth 0.2 0.053 0.267 0.276 0.008
Post Smooth 0.5 0.132 0.261 0.299 0.009
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Table 6. Average Absolute Bias, Standard Error and Root Mean Squared Error for the ACT Reading Test (A to B).

Abs. Bias

Sample Size = 250

S.E. RMSE s.e.(RMSE) Abs. Bias

Sample Size = 500

S.E. RMSE s.e.(R. SE)
Unsmoothed 0.056 0.969 0.973 0.103 0.042 0.685 0.690 0.047
Linear 0.351 0.787 0.883 0.081 0.355 0.564 0.689 0.045
Quad. Curve 0.339 0.854 0.932 0.097 0.336 0.620 0.722 0.057
Post Smooth 0.2 0.119 0.866 0.877 0.083 0.101 0.623 0.635 0.039
Post Smooth 0.5 0.258 0.787 0.839 0.076 0.244 0.587 0.647 0.040

Abs. Bias

Sample Sile = 2000

S.E. RMSE s.e.(RMSE)
Unsmoothed 0.027 0.341 0.346 0.012
Linear 0.359 0.283 0.476 0.018
Quad. Curve 0.339 0.301 0.472 0.019
Post Smooth 0.2 0.102 0.314 0.335 0.011
Post Smooth 0.5 0.192 0.308 0.374 0.013
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0.8

0.6

n 0.2

-0.2

-0.4

Unsmoothed
---- Quad. Curve
- - Post Smooth 0.2

Post Smooth 0.5
Linear

10 15

Raw Score
20 25 30

Figure 2. Equating functions for Liccnsurc tcst using observed data.

2 2



0

Form A to B

.......... -

Unsmoothed
--. Quad. Curve

- Post Smooth 0.2
.-.- Post Smooth 0.5

Linear

10 20 30 40 50 60 70
Raw Score

:11

Form C to D

Unsrnoothcd
- Quad. Curve
- - Post Smooth 0.2

Post Smooth 0.5
Linear

10 20 30 40 5.0 60
Raw Score

70

1

-1 -

-2 -

-3 -

Form B to C

Unsmoothed
Quad. Curve

- Post Smooth 0.2
.- Post Smooth 0.5

Linear

I 1 I 1 1 1 I

0 10 20 30 40 50 60 70
Raw Score

0.5

0.0

-0.5

-1.0

Form D to E

Unsmoothed
- Quad. Curve
- - Post Smooth 0.2

Post Smooth 0.5
Linear

10 20 30 40 50
Raw Score

60 70

Figure 3. Equating functions for ACT English scores using observed data.



Form E to F

Unsmoothed
---. Quad. Curve
- - Post Smooth 0.2

-.- Post Smooth 0.5
Linear

10 20 30 40 50 60 70
Raw Score

0.5

Foim F to G

Unsmoothed
Quad. Curve

- - Post Smooth 0.2
Post Smooth 0.5

...... Linear

10 20 30 40 50 60 70
Raw Scorc

0.5

0 0

Form G to A

Unsmoothed
..... Quad. Curve
- - Post Smooth 0.2

-- Post Smooth 0.5
Lincar

-2.5

10 20 30 40 50 60 70
Raw Score

Figure 3 (continued). Equating functions for ACT English scores using obscrvcd data.



Form A to B

Unsrnoothed
Quad. Curve

- - POSE Smooth 0.2
-- Post Smooth 0.5

Linear

10 20 30 40
Raw Score

50 60

Form C to D
4

_12

0

-2

-4 -

s

'S

I
:

....
.6'

e."

Unsmoothcd
Quad. Curve

- Post Smooth 0.2
Post Smooth 0.5
Linear

0 10 20 30 40 50 60
Raw Score

Form B to C

Unsmoothed
---- Quad. Curve

- Post Smooth 0.2
Post Smooth 0.5
Linear

10 20 30 40 50 60
Raw Score

Fdrrh D to E

Unsmoothed
Quad. Curve

- Post Smooth 0.2
Post Smooth 0.5
Linear

10 20 30 40 50
Raw Score

60

Figure 4. Equating functions for ACT Mathematics scores using observed data.

9 r!



1.8

Form E to F

Unsmoothed
-- Quad. Curve
- - Post Smooth 0.2

Post Smooth 0.5
Linear

1.4 -

1.0 -
1.
*, 4.4

............

0.6 -

0.4 -

1

10 20 30 40 50
Raw Score

1.0

- 0.5

5. 0.0

Form F to G

Ulsmoothed
Quad. Curve

- - Post Smooth 0.2
-- Post Smooth 0.5

Linear

10 20 30 40
Raw Score

50 60

1.7.5

t.

-
to

Jr

0.5 -

0.0

-0.5 -

-1.0 -

-1.5 -

-2.0 -

-2.5 -

-3.0 -

.

.4.:

Form G to A

Unsmoothed-
Quad. Curve

- Post Smooth 0.2
-- Post Smooth 0.5

Linear

1.1

1
if!

:!

I
I

I

.

10 20 30 40 50 60
Raw Score

Figure 4 (continued). Equating functions for ACT Mathematics scores using observed data.



^

Form A to B

Unsmoothcd
---- Quad. Curve
- - Post Smooth 0.2
-- Post Smooth 0.5

Linear

10 20 30
Raw Score

40

0.6

ri 0.4

0.2
Vo

0.0

00 -0.2

aw/

-0.6

-0.8

Form C to D

Unsmoothed
Quad. Curve

- - Post Smooth 0.2
-- Post Smooth 0.5

Lincar

10 20 30
Raw Score

40

Unsmoothed
--- Quad. Curve
- - Post Smooth 0.2

---. Post Smooth 0.5
Linear

0.4

FOrrh D to E

Unsmoothcd
Quad. Curve

- - Pest Smooth 0.2
Post Smooth 0.5
Linear

...............
.

0 10 20
Raw Score

30 40

Figure 5. Equating functions for ACT Reading scores using observed data.

2



1.0

0.5

of I
I

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Form E to F

Unsmoothcd
---- Quad. Curve
- - Post Smooth 0.2
-- Post Smooth 0.5

Linear

%.

10 20 30
Raw Score

40

Form F to G

0.0

-0.5

1

O

Unsmoothed
- Quad. Curve

- - Post Smooth 0.2
- Post Smooth 0.5

Linear

10 20
Raw Score

I

30 40

0.2

0.0

E -0.2
.

n

E" -0.4

-0.6

73'

-0.8

Form G to A

Unsmoothod
---. Quad. Curve
- - Past Smooth 0.2

-- Post Smooth 0.5
Lincar

10 20 30 40
Raw Score

Figure 5 (continued). Equating functions for ACT Reading scores using observed data.

28



Unsmoothed
- Quad. Curve
- - Post Smooth 0.2

-- POSE Smooth 0.5
Linear

2.5

2.0

>,
1.5

Form C to D

t.1)

0.0

-0.5

- Unsmoothed
---- Quad. Curve
- - Post Smooth 0.2
-- Post Smooth 0.5

Linear

10 20
Raw Score

30 40

Form B to C

0.4 -
Unsmoothed-

--- Quad. Curve
- - Post Smooth 0.2

0.2 - Post Smooth 0.5
Linear

0.0 - .
t

a

-0.2 7 I.

1!
1!

-0.4 - a

-0.6 -

0
i

I I

10 20 30
Raw Score

40

0.0

,
V,

Form D to E

- Unsmoothed
---- Quad. Curve
- - Post Smooth 0.2
-- Post Smooth 0.5

Linear

-1.4

0 10 20 30 40
Raw Score

Figure 6. Equating functions for ACT Science scores using observed data.

S.

29



Unsmoothed
Quad. Curve

- - Post Smooth 0.2
-- Post Smooth 0.5

Linear

Form F to G

Unsmoothcd
---- Quad. Curve
- - Post Smooth 0.2
-- Post Smooth 0.5

Linear

10 20
Raw Score

30 40

2.5

2.0

1.5

c)

1.0

0.5
7.5

0.0

-0.5

-1.0

Form G to A

Unsmoothed
Quad. Curve

- - Post Smooth 0.2
-- Post Smooth 0.5

Linear

10 20 30 40
Raw Score

Figure 6 (continued). Equating functions for ACT Science scores using observed data.

30



English Form A to B

1 I 1

0 10 20

Unsmoothed
Quad. Curve

- - Post Smooth 0.2
-- Post Smooth 0.5

Linear

I I

30 40 50 60 70
Raw Score

Science Form G to A

Unsmoothcd
--- Quad. Curve
- - Post Smooth 0.2
-- Post Smooth 0.5

Linear

10 20
Raw Score

30 40

Unsmoothcd
---- Quad. Curve
- - Post Smooth 0.2
-- Post Smooth 0.5

Linear

Figure 7. Population equatings for three pairs of distributions used in simulation.

31



1.0

0.8

Sample Size 250

Unsmoothed
Quad. Curve

- - Post Smooth 0.2
Post Smooth 0.5

---- Linear

1:10

0.6 / ;

05

0.4
.. .........

0.2

0.0

10 15 20
Raw Score

25 30

0.6

Sample Size 500

L Unsmoothed
Quad. Curve

- - Post Smooth 0.2
Post Smooth 0.5

--. Linear

0.4

0.2

0.0

10 15 20 25 30
Raw Score

0.7

0.6

*.o. 0.5

Sample Size 2000

Unsmoothed
Quad. Curve

- - Post Smooth 0.2
Post Smooth 0.5

- Linear

5 0.3
2:

0.2

0.1

0.0

10 15 20
Raw Score

25 30

Figure 8. Root mean squared error of equating methods for Licensure test.

a.



20

..7111

0.7

0.6

0.5

0.4

4.)

5 0.3

Sample Size 250

c4 0.2

0.1

0.0

Unsmoothed
Quad. Curve

- - Post Smooth 0.2
--- Post Smooth 0.5
---- Linear

10

Raw Score
15 20

0.7

0.6

Sample Size 500

Unsmoothed

0.2
0.5

Quad. Curve
- - Post Smooth

--- Post Smooth
---- Linear

to- 0.5

/ f
/

0.3 /.
47.4". .......

60 ......... -.
0.2

0.1

0.0

5 10

Raw Score
15

0.5
Sample Size 2000

Unsmoothed
..... Quad. Curve0.4

- - Post Smooth 0.2
Post Smooth 0.5

---- Linear
0.3

0.2 4.

;

;

...0.1

0.0

5 10

Raw Score
15 20

Figure 9. Root mean squared error of equating methods for ACT Reading subtcst.

33



Uasmoothed
uad. Curve

- - Post Smooth 0.2
--- Post Smooth 0.5
---- Linear

3.0

2.5

0.5

0.0

A

A ;

1 ;

1

%

1

Sample Size 2000

Unsmoothed
Quad. Curve

- - Post Smooth 0.2
- Post Smooth 0.5

Linear

,

..... ....... ..

r%

I 1
20 30 40 50 60 70

Raw Score

3.0

2.5

Sample Size 3000

Unsmoothed
Quad. Curve

- - Post Smooth 0.2
-. Post Smooth 0.5

---- Linear
2 0

%

`

1.5
I.,

15 1.0

0.5

0.0 I
1 | | | 1

20 30 40 50 60 70
Raw Score

... . -.................

I

Figurc 10. Root mean squared error of equating methods for ACT English test (A to B).

34



1.4

1.2

s...0
1 .0

\0.8 .4g '.+4,...
co 'IN - ""-

,' .,... ---..
.." ..., \

0.6 --v!..........,.._:.;,,, .........
.4

Sample Size 250

Unsmoothed
Quad. Curve

- - Post Smooth 0.2
-- Post Smooth 0.5
---- Linear

0
.c4 0.4

0.2

0.0

10 .15 20 25
Raw Score

30 35 40

Unsrnoothed
Quad. Curve

- - Post Smooth 0.2
--- Post Smooth 0.5
- --- Linear

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

'164 ..

Sample Size 2000

Unsmoothed
Quad. Curve

- - Post Smooth 0.2
Post Smooth 0.5

- - Linear

1 I I 1 1 1

10 15 20 25 30 35 40
Raw Score

Figure 11. Root mean squared error of equating methods for ACT Science test (G to A.

6,



1.6

1.4

1.2

1.0

Sample Size 250

0.6

0.2

0.0

Unsmoothed
Quad. Curve

- - Post Smooth 0.2
-- Post Smooth 0.5
---- Linear

10 15 20 25
Raw Score

30 35 40

Sample Size 500

Unsmoothed
Quad. Curve

- - Post Smooth 0.2
--- Post Smooth 0.5
---- Linear

10 15 20 25

Raw Score
30 35 40

Unsmoothed
Quad. Curve

- Post Smooth 0.2
- Post Smooth 0.5
---- Linear

Figure 12. Root mean squared error of equating methods for ACT Reading test (A to g).

3(;


